Quantum key distribution without reference frame alignment: Exploiting photon orbital angular momentum
نویسنده
چکیده
We present a new implementation of the BB84 quantum key distribution protocol that employs a d-dimensional Hilbert space spanned by spatial modes of the propagating beam that have a definite value of orbital angular momentum. Each photon carries log d bits of information, increasing the key generation rate of the protocol. The states used in the transmission part of the protocol are invariant under rotations about the propagation direction, making this implementation independent of the alignment between the reference frames of the sender and receiver. The protocol still works when these reference frames rotate with respect to each other.
منابع مشابه
Near-perfect sorting of orbital angular momentum and angular position states of light.
We present a novel method for efficient sorting of photons prepared in states of orbital angular momentum (OAM) and angular position (ANG). A log-polar optical transform is used in combination with a holographic beam-splitting method to achieve better mode discrimination and reduced cross-talk than reported previously. Simulating this method for 7 modes, we have calculated an improved mutual in...
متن کاملOn the quantum-channel capacity for orbital angular momentum-based free-space optical communications.
Inspired by recent demonstrations of orbital angular momentum-(OAM)-based single-photon communications, we propose two quantum-channel models: (i) the multidimensional quantum-key distribution model and (ii) the quantum teleportation model. Both models employ operator-sum representation for Kraus operators derived from OAM eigenkets transition probabilities. These models are highly important fo...
متن کاملQuantum field theory of photons with orbital angular momentum
A quantum-field-theory approach is put forward to generalize the concept of classical spatial light beams carrying orbital angular momentum to the single-photon level. This quantization framework is carried out both in the paraxial and nonparaxial regimes. Upon extension to the optical phase space, closed-form expressions are found for a photon Wigner representation describing transformations o...
متن کاملPolarization control of single photon quantum orbital angular momentum states.
The orbital angular momentum of photons, being defined in an infinite-dimensional discrete Hilbert space, offers a promising resource for high-dimensional quantum information protocols in quantum optics. The biggest obstacle to its wider use is presently represented by the limited set of tools available for its control and manipulation. Here, we introduce and test experimentally a series of sim...
متن کاملTest of mutually unbiased bases for six-dimensional photonic quantum systems
In quantum information, complementarity of quantum mechanical observables plays a key role. The eigenstates of two complementary observables form a pair of mutually unbiased bases (MUBs). More generally, a set of MUBs consists of bases that are all pairwise unbiased. Except for specific dimensions of the Hilbert space, the maximal sets of MUBs are unknown in general. Even for a dimension as low...
متن کامل